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The Validity of Using the Microscopic Parabolic Heat
Conduction Model in Place of the Macroscopic
Parabolic Model under the Effect of a Moving Heating
Source

A. F. Khadrawi1 and M. A. Al-Nimr2, 3
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The validity of the use of the microscopic parabolic heat conduction model
under the effect of a moving heating source is investigated. Two configu-
rations are considered which are the finite and the semi-infinite domains.
For each configuration, two types of thermal boundary conditions are con-
sidered which are the isothermal and the insulated types. Four dimension-
less parameters are found to control the thermal behavior of the considered
problem which are the dimensionless heating source speed U , heat capacity
ratio CR , dimensionless amplitude of the heating source S0, and dimension-
less plate thickness ξ0 for the finite domain configuration. It is found that
the use of the microscopic parabolic heat conduction model instead of the
parabolic macroscopic model is essential when the dimensionless speed of
the source U >0.1 The heat capacity ratio CR is found to have insignificant
effect on the domain thermal behavior. However, the deviation between the
microscopic and macroscopic models increases as ξ0 decreases. The deviation
between the two models is significant within the very early stages of time.

KEY WORDS: heat conduction; microscopic parabolic model; moving source;
two-step model; validation criterion.

1. INTRODUCTION

Energy transport during high-rate heating of thin metal films is a rapidly
emerging area in heat transfer [1–11]. When a thin film is exposed to a
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very rapid heating process, such as that induced by a short-pulse laser,
the response time of the film is typically of the order of 1 ps, which is
comparable to the phonon–electron thermal relaxation time. Under these
situations, thermal equilibrium between a solid lattice and electron gas
cannot be assumed and heat transfer in the electron gas and the metal lat-
tice needs to be considered separately. Models describing the nonequilib-
rium thermal behavior in such cases are called the microscopic two-step
models. Two microscopic heat conduction models are available in the lit-
erature. The first one is the parabolic two-step model [1–5, 8–11], and the
second one is the hyperbolic two-step model [1, 3, 7].

Ultrafast heating of metals consists of two major steps of energy
transfer that occur simultaneously. In the first step, electrons absorb most
of the incident radiation energy and the excited electron gas transmits its
energy to the lattice through an inelastic electron–phonon scattering pro-
cess [1–3]. In the second step, the incident radiation absorbed by the metal
film diffuses spatially within the film mainly by the electron gas. For typi-
cal metals, depending on the degree of electron–phonon coupling, it takes
about 0.1–1 ps for electrons and a lattice to reach thermal equilibrium.
When the ultrafast heating pulse duration is comparable with or less than
this thermal equilibration time, the electrons and lattice are not in thermal
equilibrium.

In the literature, numerous studies have been conducted using the
microscopic parabolic heat conduction model [1–5, 8–11]. These studies
show that use of this model is a necessity in applications involving very
thin film, very short duration heating sources, and very high frequency
fluctuating heating sources. In the present work, we intend to investigate
the thermal behavior of metal films under the effect of a moving plane
surface heating source.

The heating source will heat the electron gas, which in turn exchanges
part of its energy with the solid lattice. In applications involving heating
sources with very high velocity, there is not enough time available for the
electron gas and solid lattice to attain the same temperature. The goal of
the present work is to investigate the conditions under which the use of
the microscopic parabolic heat conduction model in place of the macro-
scopic heat conduction model is a necessity.

Two configurations are considered which are the finite and
semi-infinite domains. Also, two types of thermal boundary conditions are
considered with each configuration, which are the insulated and isothermal
boundary conditions.
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2. ANALYSIS

Referring to Fig. 1, we consider finite (Fig. 1a) and semi-infinite
(Fig. 1b) domains, which have an initial temperature equal to the ambient
value. Suddenly, a moving plane surface heat source starts moving within
each domain. The source starts its motion from the plate centerline in the
case of the finite domain and from the surface in the case of the semi-
infinite domain. Using the dimensionless parameters given in the nomen-
clature, the governing equation of the parabolic heat conduction model is
given as

∂θe

∂η
= ∂2θe

∂ξ2
− (θe − θl)+ S0

U
δ

(
η− ξ

U

)
, (1)

∂θl

∂η
= CR(θe − θl). (2)

When the electron and lattice temperatures are very close to each other,
the microscopic parabolic heat conduction model may be replaced with
the macroscopic parabolic heat conduction model, which assumes that
θe = θl = θ , as

∂θ

∂η
= ∂2θ

∂ξ2
+ S0

U
δ

(
η− ξ

U

)
. (3)

Equations (1) and (2) have the following initial conditions:

θe(0, ξ)= θl(0, ξ)=0.

The boundary conditions depend on the type of configuration and they
are given as
Configuration (1): Infinite domain

(A) Insulated boundary condition:

∂θe

∂ξ
(η,0)= ∂θl

∂ξ
(η,0)=0, θe(η,∞)= θl(η,∞)=0. (4a)

(B) Isothermal boundary condition:

θe(η,0)= θl(η,0)=0, θe(η,∞)= θl(η,∞)=0. (4b)

Configuration (2): Finite domain

(A) Insulated boundary condition:

∂θe

∂ξ
(η,0)= ∂θl

∂ξ
(η,0)=0,

∂θe

∂ξ
(η, ξ0)= ∂θl

∂ξ
(η, ξ0)=0. (4c)
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Fig. 1. Schematic diagram of the problem under consideration.

(B) Isothermal boundary condition:

∂θe

∂ξ
(η,0)= ∂θl

∂ξ
(η,0)=0, θe(η, ξ0)= θl(η, ξ0)=0. (4d)

Equations (1) and (2) are solved using the Laplace transformation tech-
nique. Now with the notation that L {θe(η, ξ)} = We(S, ξ) and L {θl(η, ξ)}
=Wl(S, ξ), the Laplace transformation of Eqs. (1) and (2) yields

SWe = d2We

dξ2
−We +Wl +

S0

U
e− Sξ

U , (5)

SWl = CRWe +CRWl. (6)

Also, the Laplace transformation of the boundary conditions is given as
Configuration (1): Infinite domain

(A) Insulated boundary condition:

∂We

∂ξ
(S,0)= ∂Wl

∂ξ
(S,0)=0, We(S,∞)=Wl(S,∞)=0. (7a)

(B) Isothermal boundary condition:

We(S,0)=Wl(S,0)=0, We(S,∞)=Wl(S,∞)=0. (7b)

Configuration (2): Finite domain

(A) Insulated boundary condition:

∂We

∂ξ
(S,0)= ∂Wl

∂ξ
(S,0)=0,

∂We

∂ξ
(S, ξ0)= ∂Wl

∂ξ
(S, ξ0)=0. (7c)
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(B) Isothermal boundary condition:

∂We

∂ξ
(S,0)= ∂Wl

∂ξ
(S,0)=0, We(S, ξ0)=Wl(S, ξ0)=0. (7d)

Equations (5) and (6) assume the following solutions for We and Wl:
Configuration (1): Infinite domain

We(S, ξ) = De− Sξ
U +Ee−βξ , (8)

Wl(S, ξ) = CRWe

S +CR

. (9)

Configuration (2): Finite domain

We(S, ξ) = E cosh(βξ)+F sinh(βξ)+De− Sξ
U , (10)

Wl(S, ξ) = CRWe

S +CR

, (11)

where β =
√

1+S − CR

S+CR
.

The constants E, F , and D assume values depend on the type of con-
figuration and thermal boundary condition and are given as
Infinite domain with insulated boundaries:

D = S0(
β2 − S2

U2

)
U

and E = −DS

βU
.

Infinite domain with isothermal boundaries:

D = S0(
β2 − S2

U2

)
U

and E =−D.

Finite domain with insulated boundaries:

E =
DS
U

e− Sξ0
U −Fβ cosh(βξ0)

β sinh(βξ0)
, F = DS

βU
and D = S0(

β2 − S2

U2

)
U

.

Finite domain with isothermal boundaries:

E =−D, F = −De− Sξ0
U −E cosh(βξ0)

sinh(βξ0)
and D = S0(

β2 − S2

U2

)
U

.
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Equations (8)–(11) are inverted using a computer program based on the
Riemann-sum approximation [1] as

θ(η, ξ)∼= eγ η

η

[
1
2
W(γ, ξ)+Re

N∑
n=1

W

(
γ + inπ

η
, ξ

)
(−1)n

]
,

where Re refers to the “real part of,” i is the imaginary number
√−1,

and γ is the real part of the Bromwich contour that is used in inverting
Laplace transforms. For faster convergence, the quantity γ η=4.7 gives the
most satisfactory results. The quantity γ η=4.7 is found to be appropriate
in our case since other tested values of γ η seem to need longer computa-
tional time.

2.1. Thermal Shock Wave Phenomenon

One of the interesting phenomena in the parabolic two-step heat con-
duction model is the possible formation of the thermal shock wave. When
the heat source moves at a speed equal to or faster than that of the
heat propagation in the solid, a large amount of thermal energy accumu-
lates in the neighborhood of the moving heat source. Such accumulated
energy cannot be efficiently transferred to the surrounding media before
the heat source moves away. To examine this phenomenon in the para-
bolic two-step model, the governing equation for the lattice temperature
in dimensional form is expressed as:

∂2Tl

∂x2
+ αe

C2
E

∂3Tl

∂t ∂x2
= 1

αe

∂Tl

∂t
+ 1

C2
E

∂2Tl

∂t2
. (12)

The thermal diffusivity of the electron gas αe, is defined by k
Ce

. The equiv-
alent thermal diffusivity αE and thermal wave speed CE in such a pho-
non–electron system are defined as

αE = k

Ce +Cl
, CE =

√
kG

CeCl
.

Table I shows the equivalent thermal wave speed CE and the corresponding
dimensionless equivalent thermal wave speed UE , which is equal to

√
Ce
Cl

,
for many metals.
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Table I. Equivalent Thermal Wave Speed and Corresponding Dimen-
sionless Equivalent Thermal Wave Speed

Equivalent thermal wave Dimensionless equivalent
Metal speed CE(m · s−1) thermal wave speed UE

Cu 1.6109 × 104 0.0786
Ag 1.4949 × 104 0.0917
Au 1.2961 × 104 0.0917
Pb 1.1738 × 104 0.1183

3. RESULTS AND DISCUSSION

The interest is focused on the operating conditions to validate the
usage of the macroscopic parabolic heat conduction model instead of the
microscopic parabolic one. This is done by tracing the effect of different
dimensionless parameters on the difference between the electron and lat-
tice temperatures (θe − θl). These dimensionless parameters are found to
be U,CR and ξ0. However, it is found better to normalize the temperature
difference (θe −θl) by multiplying it by U/S0, and as a result, the normal-
ized temperature difference is given as (θe − θl)U/S0. The reason for cre-
ating such a normalized temperature difference is to give a sort of relative
deviation between θe and θl instead of the absolute difference. To explain
this, it is known that the total amount of energy released by the moving
source decreases as U increases. As a result, both the electron and lattice
temperatures decrease and the absolute difference between them |θe − θl|
also decreases. This small difference between θe and θl at high U may
give a wrong impression that the macroscopic heat conduction model is
valid, which is not true. In this case it is better to search for a sort of
percentage relative difference, which is found in the normalized quantity
|θe − θl|U/S0. Other possibilities include to divide the difference |θe − θl| by
θe or θl, but in such a case, there is a problem for locations that do not
feel the effect of the moving heating source and that have zero tempera-
tures for both θe and θl.

Figures 2–8 show the validity of the use of the macroscopic para-
bolic heat conduction model in a semi-infinite domain with insulated and
isothermal surfaces, while Figs. 9–12 consider the case of a finite domain
with insulated and isothermal surfaces.

Figure 2 shows the spatial distribution of the normalized tempera-
ture difference between θe and θl at a different heating source velocity
U . As clear from this figure, the normalized difference increases as U

increases. Also, it is clear from Figs. 3 to 4 that the normalized difference
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Fig. 2. Spatial distribution of the normalized temperature dif-
ference between θe and θl at different U (semi-infinite, insulated).

Fig. 3. Effect of U on the normalized temperature difference
between θe and θl at different CR (semi-infinite, insulated).
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Fig. 4. Effect of S0 on the transient behavior of the normalized
temperature difference between θe and θl (semi-infinite, insulated).

S  = 1.0
 = 0.0

U = 1.0

C  = 0.005

C  = 0.01

C  = 0.02

Fig. 5. Effect of CR on the transient behavior of the normalized
temperature difference between θe and θl (semi-infinite, insulated).
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Fig. 6. Effect of U on the transient behavior of the normalized
temperature difference between θe and θl (semi-infinite, isothermal).

Fig. 7. Effect of CR on the normalized temperature difference
between θe and θl at different η (semi-infinite, isothermal).
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Fig. 8. Effect of CR on the transient behavior of the normalized
temperature difference between θe and θl (semi-infinite, isothermal).

Fig. 9. Effect of U on the normalized temperature difference
(finite, insulated).
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Fig. 10. Effect of ξ0 on the transient behavior of the normalized
temperature difference between θe and θl (finite, insulated).

Fig. 11. Effect of U on the transient behavior of the normalized
temperature difference between θe and θl (finite, isothermal).
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Fig. 12. Effect of ξ0 on the transient behavior of the normalized
temperature difference between θe and θl (finite, isothermal).

increases as U increases and it is essential to use the microscopic model
for moving sources have U >0.1. Most typical thin metals have G of order
1016 W · m−3 · K−1, Ce of order 104 J · m−3 · K−1, and ke of order 100 W ·
m−1 · K−1. This implies that the use of the microscopic heat conduction
model is essential when u is larger than 104 m · s−1. Under the effect of a
high speed moving source, the time available for the electron and lattice
to exchange heat has the same order of magnitude as the time required
by the electron gas to receive heat from the ultrafast moving heating
source. The peak in the normalized temperature difference becomes sharp
and high as U increases, and this peak moves toward larger times as
U decreases, and in the limit of very small U , such a peak diminishes
as shown in Fig. 4. This implies that the use of the microscopic para-
bolic heat conduction model is essential in the early stages of time. Also,
the dimensionless amplitude of the heating source S0 has an insignificant
effect on the normalized temperature difference.

Figure 5 shows the effect of CR on the transient behavior of the nor-
malized temperature difference. For most known metals, CR varies within
a very narrow range (0.005 – 0.02) and the effect of CR within this narrow
range on the normalized temperature difference is insignificant.

Figure 6 shows the effect of U on the normalized temperature dif-
ference for the isothermal case. Conclusions similar to that of Fig. 4 may
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be obtained with very slight difference in the thermal behavior. Also, the
effect of CR on the normalized temperature difference in a semi-infinite
domain with an isothermal surface is shown in Figs. 7 and 8. Again, the
main conclusions drawn for the insulated case remain the same.

Figures 9 and 10 show the effect of different parameters on the nor-
malized temperature difference in a finite domain of thickness ξ0 having
insulated surfaces. Here, ξ0 is a new effective parameter, which has not
been seen in a semi-infinite case.

Figure 9 shows the effect of U on the normalized temperature differ-
ence between θe and θl. Again, the use of the microscopic parabolic heat
conduction model is essential when U >0.1 and this conclusion is simi-
lar to a semi-infinite case. Other observations are similar to that found in
Figs. 3 and 4.

Figure 10 shows the effect of ξ0 on the dynamic behavior of the nor-
malized temperature difference. It is clear that the peaks in the normal-
ized temperature difference increases as ξ0 decreases. This implies that the
use of the microscopic parabolic heat conduction model is essential in thin
metal films independent of the value of other different parameters. Again,
the peaks in the normalized temperature difference appear within the early
stages of times and this implies that the use of the microscopic heat con-
duction model is essential to predict the metal thermal behavior within the
early stages of time.

Figure 11 shows the effect of U on the normalized temperature dif-
ference between θe and θl for the isothermal case. Again, the use of the
microscopic parabolic heat conduction model is essential when U >0.1
and this conclusion is similar to that for the semi-infinite case. Other
observations are similar to that found in Figs. 4 and 6.

Figure 12 shows the effect of ξ0 on the dynamic behavior of the
normalized temperature difference at different U ′s. The peak in the
normalized temperature difference becomes sharp and high as U increases
and this peak moves toward larger times as U decreases. This implies that
the use of the microscopic parabolic heat conduction model is essential in
the early stages of time. Also, it is clear that the effect of ξ0 on the nor-
malized temperature difference is insignificant.

Figures 13 and 14 show the transient response of the dimensionless
lattice temperatures at three velocities and for two metals. Each figure
consists of three curves where each curve corresponds to a specific speed
of the moving heating source. These speeds are selected such that one is
slightly slower, the second is exactly equal to, and the third is slightly
faster than the equivalent wave speed in phonon–electron interactions. It
is clear that the thermal shock wave phenomenon does not appear in
these figures due to the fact that the total amount of energy released by
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Fig. 13. Transient response of the dimensionless lattice temper-
ature at different U for Cu.

Fig. 14. Transient response of the dimensionless lattice temper-
ature at different U for Pb.
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the moving source decreases as U increases. This implies that the slight
increase in the lattice temperature due to the accumulation of energy at
the wave front is overshadowed by the decrease in this energy due to the
increase in the moving source speed. Also, in reality, the thermal wave has
a speed different than the equivalent thermal wave speed. It may be better
to consider a point heating source rather than a plane heat source to trace
the thermal shock phenomenon. With a point heat source it is possible to
observe the variation in the lattice temperature within the circumference
of the continuum circle centered at the heat source.

4. CONCLUSION

The validity of the use of the macroscopic parabolic heat conduction
model instead of the microscopic hyperbolic model is investigated under
the effect of a moving heating source. Two configurations are considered
which are the finite and semi-infinite domains, and two thermal bound-
ary conditions are considered for each configuration, which are the insu-
lated and isothermal boundary conditions. Four dimensionless parameters
are found to affect the domain thermal behavior, which are U,CR,S0, and
ξ0. It is found that the use of the microscopic parabolic heat conduction
model is essential in domains containing heating sources that move with
U >0.1 The effect of the heat capacity ratio CR and the dimensionless
amplitude of the heating source S0 on the domain thermal behavior is
found to be insignificant. On the other hand, the use of the microscopic
parabolic heat conduction model is found to be essential during the early
stages of time and in very thin domains except in a finite domain with an
isothermal boundary.

NOMENCLATURE

C heat capacity, J ·m−3 ·K−1

CE equivalent thermal wave speed,
√

kG/CeCl
CR heat capacity ratio, Ce/Cl
G electron-phonon coupling factor, J ·m−3 ·K−1

K thermal conductivity, W ·m−1 ·K−1

q conduction heat flux, W ·m−2

Q dimensionless conduction heat flux, q
√

ke/G/kT∞
S Laplacian domain
se volumetric heating source, W ·m−3

s0 amplitude of the heating source, W ·m−2

S0 dimensionless amplitude of the heating source, s0/GT∞
√

ke/G

t time, s
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T temperature, K
T∞ ambient and initial temperature, K
u velocity of heating source, m · s−1

U dimensionless velocity of heating source velocity, uCe/
√

Gke
UE dimensionless equivalent thermal wave speed,

√
Ce/Cl

x transverse coordinate, m
2x0 plate thickness

Greek symbols
α thermal diffusivity, k/C

αE equivalent thermal diffusivity, k/(Ce +Cl)

δ Dirac’s delta function
η dimensionless time, tG/Ce
θ dimensionless temperature, (T −T∞)/T∞
ξ dimensionless transverse coordinate, x/

√
ke/G

ξ0 dimensionless thickness of the plate, x0/
√

ke/G

Subscript
e electron gas
F Fermi surface
l solid lattice
∞ ambient
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